Pen & Paper - Spielsysteme > Savage Worlds Archiv

Würfelchancen bei SW

<< < (2/4) > >>

MarCazm:
Schon schön zu sehen wie deutlich überlegen die Wild Cards dem Otto Norm Extra sind.


--- Zitat von: reinecke am  7.04.2009 | 22:56 ---(hah! damit habe ich ganz viele posts unter mir inhaltlich sinnlos gemacht  :ctlu:)

--- Ende Zitat ---

Wie konntest du nur... ~;D

ragnar:
Speziell an Oilof, hier nochmal die Tabelle mit 3 Nachkommastellen. Beim Screenshot hat es bei "Würfel+Wilddie" nur für den w10 gereicht, alles andere wäre bei meiner Auflösung unleserlich geworden (Vielleicht hätte ich mir auch einfach in der ersten Zeile nicht so viel Platz lassen sollen).

Im Zip finden sich die entsprechende Openoffice datei als auch eine von OO gespeicherte XLS-Datei. Dort sollte man das Format recht leicht auf mehr als 3 Nachkommastellen einstellen können.

[gelöscht durch Administrator]

reinecke:

--- Zitat von: ragnar am  7.04.2009 | 23:52 ---Im Zip finden sich die entsprechende Openoffice datei als auch eine von OO gespeicherte XLS-Datei. Dort sollte man das Format recht leicht auf mehr als 3 Nachkommastellen einstellen können.
--- Ende Zitat ---
Wahnsinn! Du bist ein Held. :)

ragnar:
Richtig intessant wird das ganze ja eigentlich nur bei der Frage nach den Freakrolls.

Was Fertigkeiten und die alte Nahkampfschadens-Regelung angeht, kann man die Dinge noch recht einfach so ablesen, z.b. ungelernte Probe (w4-2) einer sowieso schon sehr schweren Aufgabe (-6). D.h. vom Endergebnis wird 8 abgezogen, man muss wenigstens eine 12 zusammenbekommen um die Probe zu schaffen= Die Chance darauf liegt immerhin bei recht guten 4,3%. Das ganze mit Steigerung zu schaffen (hat somit einen "MW" von 16) hat noch eine Chance von 1,7%.

Wenn die Würfel aber addiert werden (Der Erwartungswert von 2w6 liegt  trotz Explosionen lediglich bei 8,2; wie sieht die Chance aus das in eine 24 zu verwandeln?), sieht das ganze schon komplizierter aus. Darüber müsste ich mal eine Nacht schlafen, bzw. mal sehen was ich Morgen nach der Arbeit damit anstelle.

Eulenspiegel:
Und für alle, die an einer geschlossenen Formel interessiert sind:
Sei n der Mindestwurf und sei d die Anzahl der Seiten.

Dann lautet die geschlossene Formel für die Wahrscheinlichkeit mit einem d seitigen Würfel mindestens ein n zu erwürfeln:
PExtra(n,d) = (1-(n-1-d*(AUFRUNDEN(n/d)-1))/d) * 1/(d^(AUFRUNDEN(n/d)-1))

für Wildcards ergibt sich folgende Wahrscheinlichkeit:
PWildCard(n,d) = 1- (1-PExtra(n,d)) * (1-PExtra(n,6))

Ich habe das ganze mal als Graphik angehangen.


[gelöscht durch Administrator]

Navigation

[0] Themen-Index

[#] Nächste Seite

[*] Vorherige Sete

Zur normalen Ansicht wechseln